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PREFACE 

This report provides an overview of some advanced digital signal processing techniques for 
one- and two-dimensional data that may be useful for pattern recognition, real-time image process- 
ing, and on-line test article health monitoring functions. Topics include a review of classical Fourier 
analysis and its application to transient data, the Short Time Fourier Transform, multi-resolution 
analysis, wavelet analysis, and applications of wavelet analysis to some typical AEDC-type signals. 

The work reported herein was conducted at Arnold Engineering Development Center 
(AEDC), Air Force Materiel Command (AFMC), under Program Element 65807F at the request of 
AEDC/DOT, Arnold Air Force Base, TN. The AEDC/DOT Project Manager was James D. 
Mitchell. Management for this project was performed by Sverdrup Technology, Inc., AEDC Group, 
technical services contractor of the propulsion test facilities, AEDC, AFMC, Arnold Air Force 
Base, TN, under Air Force Project No. DC97EW (Job 0088). The Sverdrup Project Manager was 
T. F. Tibbals. This work was performed in collaboration with the University of Tennessee Space 
Institute, Dr. K. R. Kimble, principal investigator, under contract A94W-07 with Sverdrup 
Technology, Inc. The manuscript was submitted for publication on October 31, 1994. 
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1.0 INTRODUCTION 

Various dynamic data analysis tools for one-dimensional time-domain signals are employed 
to determine the frequency content of a signal for mechanical analysis. When it is tied to the 

fundamental frequency of the various components comprising the machinery being evaluated, this 
information gives an indication of the state or health of the machine. Current techniques for 

evaluating dynamic data for potential mechanical problems are primarily centered around the Fast 
Fourier Transform (FF1TM) and the Short Time Fourier Transform (STFI3. However, the use of 

Fourier analysis for frequency component extraction is restricted to bandlimited stationary signals. 
Because of this restriction, small transients may not be detected due to a smoothing effect of the 
FFT, or the FFT spectrum may be smeared due to frequency ramping and abrupt incidents or 
discontinuities in the signal. Various techniques have been employed to overcome the limitations 

of the FFT for non-stationary data. These techniques include windowed Fourier Transform (Gabor 

or Short Time Fourier Transform), synchronous sampling to remove RPM-ramp effects, Wigner- 

Ville analysis, and, more recently, wavelet analysis. This report provides an overview of Fourier 
analysis (including the STFT) and a background in wavelet theory based upon the analyzing 
function basis approach so that wavelet theory may be contrasted against Fourier analysis. A model 
signal with stationary and transient characteristics is developed to permit comparisons of various 

analysis techniques based upon a known analytic signal which resembles a real vibration signal. 
Some applications of wavelets to other transient signals are also provided. 

2.0 FOURIER TRANSFORM 

Consider the representation of a finite-power signal, x(t), defined on the interval (to, to + 7') in 
terms of a set of preselected time functions Of(t) . . . . .  On(t). It is convenient to choose these 
functions with properties analogous to the orthogonal unit vectors of Cartesian space, i.e., 
orthogonal such that 

and normalized such that 

,O+T = 0 Vm~ n 

1 [to+T 
./to IO,(t)~,(t)ldt = 1 

where O* (t) is the complex conjugate of O, (t). Therefore, these functions are orthonormal 
functions on the interval (t 0, t o + T), where the orthonormality condition was chosen since the 
signal, being periodic, is bounded in power though unbounded in energy. 
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Now consider an approximation .~ (t) to x(t) based upon a series expansion of the form 

N 

n = l  

where N is a given finite positive integer and where the constants C n are to be chosen such that .~ (t) 

represents x(O as closely as possible. A criterion of measure for this closeness of approximation 

must be chosen based upon the signal's characteristics. In this case, we choose to measure the error 

in a square-integral sense since our concern is with power signals. We define this error as 

/ to+T 

~N = I~(0 - ~Ct)l~dt, 
J l o  

and we wish to find the C n coefficients to minimize this error. Substituting for ~ (t) yields 

eN = = ( t ) -  C,~, , ( t )  z ' ( O -  C ~ ( t )  dt 
J l o  n = l  

'N = !~(012dt - ~ C~ ~(t)~r, Ct)d~ + C.  ~ ' ( 0 ~ . ( ~ ) d t  dt + ~ IC.I 2} 
. / In n = l  JtO 

n = l  

N I t + T  12 

Adding and subtracting Z I cZl, ° x (0 *;c,) I dt yields 
n=i I 0 

d|O n = l  d |o  13=1 J | o  

Now since the first two terms above are independent of the C n coefficients of our approxima- 

tion, and the last term is non-negative and adds to these two terms, then the only way to minimize 

the error is to choose the approximation coefficients C n such that 

to+T 
c .  = ~:(t),~'(t)dt n = 1, 2,..., N 

,/to 

Note that this is an inner product such that C a = < x, • n >. For special choices of  the set of  functions 

O l(t) ..... O~t ) ,  referred to as complete sets in the Hilbert function space L 2 of  all square-integrable 

functions, it will be true that 

rr ] 
" ~  LJIo n = - M  

6 
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for any signal that is square-integrable, i.e., 

Jo t°+T I=(t)l=d~ < ,~. 

In the case of zero square-integral error, 

OO 

=(~) = ~ c.+.(0 
a n d  n = l  

1 fti°+T 
I z ( t ) l  2dr  - I C , , I  = , 

n = l  

This is the generalized Parseval theorem which states that the mean power of the periodic signal is 

the sum of the squares of the approximating coefficients. The exponential functions of the Fourier 
series form a complete orthogonal set in L 2 such that 

• . ( t )  = e '"~°+ , n = O, :1:1,-I-2,  ..., oo 

are axes of L 2 and Fourier analysis projects x(t) onto these axes just as in the case of breaking a 

vector into its orthogonal components is to project the vector onto the orthogonal axes of Cartesian 

space. Now 0)o= 2 ~ f f  where Tis  the fundamental period, that is, Tis  the m i n i m u m  period for a 

complete sine wave of the lowest frequency of interest. Thus, partial sums of exponential Fourier 

series minimize the square-integrable error between the series and the signal under investigation 

(Ref. 1). 

Since sine waves have a period of 2x ,  a function x(t) that is square integrable (i.e., piecewise 
continuous) on the interval (0, 2~) i.e., 

I /.2, 
J0 I=(t)l=dt < oo, 

is an element of the Hilbert function space L2(0, 27t) of all square integrable functions defined on 

(0, 2g) and expansions and contractions of ~ t )  (i.e., varying the number of cycles on the interval 

(0, 2~)) form a basis of  the L2(0, 2x) function space. By basis is meant a set of linearly independent 
functions which can be combined to form another function which also exists in the same function 

space. Then x(t) has a Fourier series representation: 

CO 

.(~)= ~ c . ,  '-~'°' 
r t  c o  
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where, for n = -** . . . .  -2, -1, 0, 1, 2 . . . .  **, 

I [2,r 
c .  = ~ Jo ~:(t)e-~"W°~dt " 

Notice that the number of basis functions is infinite for this representation. 

Per Chui (Ref. 2), this series converges in L ~- such that 

I /2~ N 
l i , , ,  I = ( t )  - = o 

n = - M  

There are three distinct features of x(t)  in the Fourier series representation. First, x(t) is 
decomposed into mutually orthogonal components C , e  ~°~ since the inner product 

r.:_e~,,,~otC_e_i.,,ootrlt = 0 m ~ n 
1 m ' - n  

Second, the bases of  this orthonormal representation are all generated from a single function co(t) 
- e '®°t by integral dilations, i.e., Wn(t) = w(nt)  for all integers n. Finally, the Fourier expansion 
coefficients are determined via an inner product c n -<x ,  wn>. "It is orthogonality that allows us 
to find each term separately [no cross-terms means no cross-talk or interdependence between 
frequencies], and it is completeness that allows the sines and cosines to reproduce x(O."  (Ref. 3). 

However, the use of this complex exponential basis is not without complications. First, the 

approximation using Fourier coefficients is an infinite summation which can only be made finite by 

bandlimiting the signal. Second, the basis functions themselves have infinite extent in the time 

domain, and therefore cannot readily approximate a short-lived event in the signal. Third, the signal 

must be periodic, or at least the results of Fourier analysis assume periodicity, which may not be 

the case for typical real  signals. Finally, the signal should meet the Dirichlet conditions to ensure 
the existence of the Fourier series approximation I (i.e., the series converges to the continuous signal 
x(t)). The Dirichlet conditions are: 

1. Note that if these conditions hold as T --> 0% i. e., the signal is aperiodic, then the signal's Fourier 
Integral Transform exists and the signal can be approximated by a sum of pure sinusoids which vary 
continuously in frequency. In this case the spectrum is continuous instead of discrete as in the Fourier Series 
representation. 

8 
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• If  the function has discontinuities, their number must be finite in any period. 

• The function must contain a finite number of maxima and minima during any period. 

• The function must be absolutely integrable in any period, i.e., 

~o T l= ( t ) l d t  < oo 

where .fit) is a continuous (Vt  at least piecewise) describing function which approximates the 

actual (real) signal. Note that the Dirichlet conditions impose stationarity onto the signal. In 

addition, note that there is no time domain translation parameter, as will be seen later for wavelets, 

since it makes no sense to translate an infinite extent function I this is handled by the concept of  

phase. However, this implies no time domain localization is possible, and consequently, the Fourier 
coefficients are independent of time. 

For a sampled (digital) signal x s (nAt) as an approximation to.fit) (where At = sample interval 
and T = NAt analysis time block), we can then approximate c t as 

1 Jv-i T C~ -= ~ ~ (=,(nAO:,~.,o-",)~. 

1 N ' - I  
= _ T 

N 
lrl,= 0 

1 N-t 
= f i  T 

where t --) na t  and At --> T/N, and N is the number of samples (measurement values) of the signal 

within a given localized time interval of the sampling window. This defines the Discrete Fourier 

Transform (DFT) for a bandlimited signal. The Fast Fourier Transform (FFI~ is merely a fast 

algorithm for performing the DPT. 

3.0 SHORT TIME FOURIER TRANSFORM (GABOR TRANSFORM) 

To better approximate transient, short-lived or time-localized phenomena, we m u s t f ~  

the Fourier analysis beyond that of just the simple windows caused by digitization of  the signal or 

the accumulation of N samples for use in the FFT. One approach is to window the signal in time to 

better approximate the local characteristics. The Short Time Fourier Transform (STFT, or Gabor 

Transform) attempts to provide this localization. The STFI' of signal .fit) is defined as 

9 
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f _ ~ Z  S T F T ( t , w )  = (< - f)g(<)e-'n~¢d( 

where the Gaussian window g(~), {~ : [0, • ]}, centered about ~/2 is defined as 

2a, w ~ gC<) : 

and a (standard deviation) is the inflection point of  concavity of the curve such that large o 
indicates a flat curve and small o indicates a peaked curve. For comparison purposes with wavelets 
later, let us define the window g(~) to include the transformation exponential such that 

1 (<-~P • - - 2"----~y-- e -  m nw ~ g ( < )  = ~ ' - ' ~  

essentially windows the transform basis functions. Then the STFF is again an inner product, <x, 
gm,~ >, and linearity is preserved. Per Chui (Ref. 2), the time window width is Aga(t) = ~ while 
the frequency (spectral) window width is Aga(c0 ) = ~ / o ,  and these window widths are cons tan t  

for the analysis independent of frequency, as shown in the STFF calculation on the next page. Note 
that the product of  these window widths is a constant in agreement with the Heisenberg Uncertainty 
Principle. 

f 

S T F T  C A L C U L A T I O N  G R I D  

> t 

10 
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The STFF can be discretized following the same approach as for the Discrete Fourier 

Transform. For a sampled (digital) signal xs(nAt ) as an approximation to x(t) (where At = sample 

interval and T = NAt = analysis time block), we can then approximate ct, m for ~ = mat, m < N, as 

N - 1  

- ) 

n----.O 

T N - I  
= -N E z , (mAt  - nAf)g(mAt)e-V'~'o'~ 'T 

rt----O 

T,~-z 

n=O 

where again t -~tAt and At --~ T/N, N is the number of samples (measurement values) of the signal 
within a given localized time interval of the sampling window, and M is the number of samples 
within the Gaussian window g m -  l / a 4 ~  e-(m-M/2)2/2o 2 e jncom. "Note that the STFT actually has 

two windows applied in the time domain. The first window is the blocking of the data itself, just as 

in the normal DFT. The second window is the Gaussian window which localizes the signal in time 

by making the signal look as if it has compact support. However, one must remember that this 

compact support is assumed to be periodic. In addition, the window must be sufficiently narrow 

such that the signal is stationary within the window so that the Fourier Transform is applicable. 

Obviously, the STFT will work for a narrowband signal such that an appropriate window can be 

satisfactorily narrowed without adversely affecting the lower frequencies. 

3.1 APPLICATION TO MODEL SIGNAL 

The use of the STFr  for gear fault detection via vibrational analysis is described in Ref. 4. 

Gear fault detection is an inherently transient analysis since a problem with a gear tooth can only 

be perceived during the time the tooth is in mesh with other components. The STFT time-frequency 

output for such an analysis, however, requires some interpretation. Following the example of Ref. 

4, consider a model signal which resembles a gear fault and is composed of two sinusoids with 

stationary properties, another which is amplitude modulated, and two Gaussian-shaped impulses as 
described by 

z(n) = A1 sin ~ + 1 + A2 cos A3 sin T + A 4 e - " w ~  + A s e " - ' w ~  

for O < n < N - 1 .  

11 
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The parameters used were: N = 1024, fo = 10 Hz, f t  = 80 Hz, f2 - 128 Hz, A t = 1.5, A 2 = 0.75, A 3 
- i . 0 ,  A 4 = 3 . 0 ,  A 5 = 3 . 0 ,  B ! - 6 4 ,  B 2 - 6 4 ,  n I - 320, and n 2 - 576 and the sample rate at 2.56Fma x 

= 327.68 Hz (where Fma x is the maximum static frequency component). Gaussian impulses were 
used to simulate a real mechanical transient event rather than delta functions. The Gaussian 

impulses have more than one sample describing the event as opposed to the single sample of a delta 

function. This suggests a more real energy distribution in time for a mechanical system, since few 

mechanical systems can instantaneously respond and decay as implied by a delta function. Figure 

1 shows the signal and its spectrum. Note that there is no indication of the Gaussian-shaped 

impulses, and the amplitude modulated signal component at 128 H.z has split into two components 

centered around 128 Hz separated by twice the modulation frequency o f fo  = 10 Hz. 

Applying the STFr to this signal with a window width of 32 points and no overlap results in 

the spectrogram of Fig. 2. The stationary sinusoids appear as straight horizontal bands in the time- 

frequency plot, continuous for the whole time interval. Note that the frequency resolution is coarse 

due to poor frequency localization at the low number of FFr points, while the time resolution ade- 

quately shows the amplitude modulation at f - 128, but scalloping has smeared the true amplitudes. 

The Gaussian impulses have lost their time dependence, and only contribute to an amplitude mod- 

ulation effect for the 10-Hz component, since the impulses span more than one FFr window. 

Now if the window width is changed to 128 points to provide better frequency localization, 

then the spectrogram of Fig. 3 results. Note that the time resolution has worsened in an attempt to 

better localize the frequency components. In this case, the Gaussian impulses are visible since the 
10-Hz peak is sharper due to narrower frequency bin spacing. The low-frequency smearing for time 

slices three and five are the Gaussian impulses at n = 320 and n = 576, respectively. However, note 

that the amplitude modulation at 128 Hz is no longer discernible, and that it is impossible to 
determine whether the spikes at ! 18 Hz and 138 Hz are real components or a 10-Hz amplitude 

modulation of a 128-Hz component. To improve time resolution with the same size FFTs, the signal 

was analyzed with overlapping windows. Figures 4 and 5 illustrate the signal and its specwam for 

50-percent overlap with 32- and 128-point FFTs, respectively. Note that there is no change in the 

50-percent overlap spectrogram for the 128-point FFTs as compared to the zero overlap 

spectrogram (Fig. 3). This is due to the signal characteristics being of smaller scale than what even 

the 50-percent overlapping provides. However, the 32-point FFF spectrogram with 50-percent 

overlap was able to discern the Gaussian peaks which were not discernible with zero overlap (Fig. 
2). This improvement in information content via overlapping windows is at the heart of the Malvar 

wavelet approach, and will be discussed further in Section 5.0. 

Again, a cons tant  window width was utilized for all frequencies processed by the STFT, 

regardless of overlapping. As we shall see with wavelets, the ability to vary the window width with 

frequency will improve the analysis (Ref. 2). Also note that by changing window widths in a series of 

12 
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such analyses, we can enhance varions signal characteristics with subsequent trade-offs in time- 

frequency localizations for various components. This series of analyses constitutes a Multi-Resolution 
Analysis (MRA) as discussed in the next section. A multi-resolution analysis will allow us to adjust 
our windows in both the time and frequency domains to optimize time-frequency localization. 

4.0 DAUBECHIES WAVELET TRANSFORM 

4.1 THE MULTI-RESOLUTION CONCEPT 

Multi-Resolution Analysis is a processing technique that adapts to the frequency range of 
interest to optimize the resolution in both the time and frequency domains. Generally, while main- 
taining the constraints of the Heisenberg Uncertainty Principle, this analysis adapts to the frequency 

such that time resolution becomes arbitrarily good at high frequencies while frequency resolution 
becomes arbitrarily good at low frequencies. 

Generally and mathematically, a multi-resolution analysis consists of an increasing sequence 
of successive approximation spaces Vj, ranging from coarse to fine, which are closed subspaces 
within and satisfy (following the notation of Daubechies (Ref. 5) 

{0} .... CV2CV, CVoCV-ICV-2C'"-*L2(~) =~NESTED 

U Vj = L2(~) =~ CLOSURE 
$EZ 

A ~ = {0} =~ O R T H O G O N A L I T Y  
jEZ 

¢=~ z(at) 6 V3+1, a > 1 =~ M U L T I  - R E S O L U T I O N .  

I fP j  is an orthogonal projection operator onto I~, then the closure property ensures that a suit- 
able approximation to x(t) can be ultimately obtained, i.e., 

t i m  = w e 

The multi-resolution aspect of these ladder spaces is due to the last of the above properties, where 
all spaces are a scaled version of each other such that ultimately they are scaled versions of a central 
subspace V o, i.e., 

Here the notion of scale is that of cartography in that, at a given scale, the signal is replaced by a 
best approximation that can be drawn at that scale. By moving from a coarse scale to a fine scale, 
one zooms in on the details of the signal, and, hence, a more exact representation of the original 

13 
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signal. Obviously, the original sampled signal is all the information that exists and this then 
becomes the finest resolution in information that is possible; i.e., all further processing can only de- 
compose the signal to those bits of information contained in the signal without creating any new 
information. 

Multi-resolution analysis can be thought of as an approximation sequence based upon succes- 
sive decimation filters where the finest time resolution is the original (typically oversampled) 
signal. Subsequent coarser time domain approximations can then be obtained by repeated 
application of decimate-by-n filtering, where every n samples are removed in the time domain. In 
the frequency domain, this results in peeling away the higher frequencies with each application of 
the decimation filter, since the Nyquist criterion must be satisfied. Now to increase low-frequency 
resolution, one simply accumulates more time-domain samples to perform a larger frequency 
domain transform such that the same N-point FFT results in N/2 frequency bins distributed over a 
much smaller frequency bandwidth due to the filtering and decimation process [Dr. B.W. Bomar, 
UTSI]. Consequently, time domain resolution is sacrificed at the expense of frequency domain 
resolution. 

Notice that one can also look at multi-resolution analysis as a contraction and expansion (or 
dilation) of the support of the projection/approximation basis functions. This is due to the fact that 
at high frequency, best may be determined to be an N-sampled FFF; therefore, the time analysis 
window is Nt  o, where t o is the sample time interval. This means that the support of the analysis is 
much narrower for the higher frequencies than for the lower frequencies accumulated over nNt o, 

where an n-decimation was used for the same constant q ffi A f / f .  

4.2 WAVELET THEORY 

Wavelet theory unifies various signal processing techniques developed independently to 
overcome the problems of Fourier analysis. For example, multi-resolution signal processing, image 
compression sub-band coding, and wavelet series expansions are all considered a single theory 
mathematically (Ref. 6). Wavelet theory provides a good technique for signal approximation using 
scaled basis functions, of which Fourier analysis is just one application (where the support is 
infinite, non-decaying, and the basis functions are sine functions), and allows one to examine the 
effectiveness of the approximation on deeper mathematical levels systematically. This paper is 
primarily concerned with the application of wavelets to non-stationary one-dimensional signals, 
and therefore will limit its discussion of wavelets to a signal processing point of view. An additional 
interest is in the use of wavelets to systematically improve the frequency resolution of low- 
frequency components embedded within broadband signals, whether stationary or non-stationary, 
without unnecessarily burdening the computation of high-frequency spectral components. This 
then will allow real-time low-frequency pattern recognition embedded in broadband signals such 
as required for bearing fault diagnosis based upon engine case accelerometer data (Ref. 7). 
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The Fourier Transform spanned the space L 2 (0, 2~) where the elements x(t)  satisfy 

o 2" IzCt)J2dt < c~.  

However, for transient signals, there may be no periodicity (at least for the transient component  
even if embedded in a periodic signal); therefore, we must look for a transform which span 
L 2 (9~) where the elements x(t) satisfy 

~° lx(t)[2dt < o o .  
o o  

As stated by Chui (Ref. 2, p. 3), 

Clearly, the two function spaces [for each of these transforms] L2(0, 2~z) and L 2 
(~R) are quite different. In particular, since (the local average values of) 

every function in L 2 ( ~ )  must "decay" to zero at :l:oo, the sinusoidal (wave) 
functions o) n do not belong to L 2 ( ~ ) .  In fact, if we look for "waves" that 
generate L2(9~), these waves should decay to zero at :1:~; and for all practi- 
cal purposes, the decay should be very fast. That is, we look for small waves, 
or "wavele ts" ,  to generate L 2 (~) .  

The rapid decay of the wavele t  provides the localization necessary to adapt to local transients in a 
non-stationary waveform. The fact that we look for a wave or oscillating function at all is to some- 
how preserve the concept of frequency for vibration]harmonic analysis, and we also desire local- 
ization in the frequency domain as well. 

Now we still want these wavelets to be generated from a single function just as in the Fourier 
basis functions where 

= = v i n t e g e r ,  n 

to ease the analysis. In addition, we still want  the functions to be complete and onhogonal in 
L2(~)  so we can be assured that the approximation converges to x(t) in the limit and that we can 
successively find each coefficient of  the approximation. 

To span L 2 ( ~ )  using a single function which decays rapidly, i.e., is compactly supported on 
the real line, it is necessary to shift the function along 91. Consider ¥ to be a wavelet basis func- 
tion, real, and of compact support on 91; then for V to span all of 91, 

XbbCz) = Xb(Z -- b) z ,  b 
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This is the translation property of q .  Now, obviously V must still be capable of describing different 
frequencies, since our intent is to perform a frequency analysis of the mechanical phenomena. To 
accomplish this easily, without the use of sinusoids, we must consider the fundamental definition 
of  frequency as the inverse of the period between zero crossings or the time extent of the compactly 
supported analysis functions. With this in mind, we consider frequency as embedded in the dilations 
of the basis function such that 

~.,+(~) ~ ~(az - b) z,a, b 6 ~ ,  a > O  

Observe that our development parallels that for Fourier analysis, and seeks a basis function 
that is obtained from a single function by dilations (ax) to adjust to varying frequencies and 
translations (b/a) to span the real line, i.e., 

~ a . b ( z ) " ~ ( a z - - b ) ~ .  [ a l z - b ) ]  z , a , b E ~ ,  a > 0 ,  

and is different from the Fourier analysis only in the basis functions used, which are not periodic 
and are of compact support. 

Now to normalize this basis in L2(gt), consider 

Therefore 

II ~(a=-b) ll'~= [ l ~  l~(az b)l'dz] ½ - -  ~ a  - ½ [ / ~  I,~(z)12dz] ½ 

II ~(o~ - b) 112= o-½ II ~,(~) I1~, 

so that for ~ a,b(X) tO be of unit length, 

~ba,b(Z) = a½~b(az - b) z , a , b E ~ ,  a > 0  . 

For economy of the analysis, let's restrict ourselves to integral dilations and translations just as we 
restrict ourselves to integral frequencies for the FFT. LetZ denote the set of integers; then for j  ¢ Z ,  
a --> aj = a/o, a o > 1, where a o is the fixed dilation parameter. Now since the width (support) of the 
analyzing wavelet will be proportional to aJo, it follows that we will need to translate in steps 
proportional to the width of the wavelet basis function to cover the whole real line. Consequently, 
let b --~ b k = kboa-o j, k ¢ Z ,  where b o is fixed. Then 

,L 

~,~(~) = ~:,~(,,~(~: - kboaT~) 
J. 

=a2o~(aJoz-kbo) = 6 ~ ,  a > l :  bo>O, j, k q Z .  
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Later, b o will become the sampling rate; however, for now let b o = 1, where it is assumed that the 
shift k is proportional to the width of ¥ .  

Since our interest is in the analysis of signals evolving in time, first let us look at what the time 

description of the wavelet is. Now time is continuous just like the real line. However, one still wants 

to perform integral dilations and translations utilizing the set of integers Z, which is a subset of ~R. 

Therefore, the wavelets describing a time evolving signal instead of a spatially evolving one would 
be [in Daubechies' notation] 

~,kCt) = a -%C, , -~ t  - k,') a > l ,  j ,  k E Z ,  

and where "~ = sample time interval. 

In summary, the wavelets are basis functions for the wavelet expansion just as the complex 
exponentials (sinusoids) are the basis functions for the Fourier expansion. The continuous wavelet 
expansion of a function (signal) x(t) in L 2 (91) is the inner product defined as 

w Ix(t)] = C ~ " x )  Ca, ~) = lal-~ x(~)¢( )dr 
o o  

or discretized 2 

w [~(t)] = t~:,~ , (ao,,-) = lal-~ z(t)~b(a2Jt - kT )d t  = < z ,  ~bj,k > 
o o  

where a --~ aJo,'c --~ kaJoT, and a o > 1 (generally 2),j, k ~ Z. The coefficient outside the integral is 
the normalization factor such that the L2-norm 1l~12 = 1. The ao-term is the magnification where j  

negative and large corresponds to large magnification, and consequently a Jo T = TlalS [ corresponds 

to small steps, and, therefore, fine details arc discernible (i.e., captures high-frequency, short tran- 
sient characteristics). 

The major mathematical difference between wavelets and the Fourier basis functions is the 
requirement that 

f_'° ,~(t)dt = 0 ,  
oO 

2. Here dixcretized means that only integral shifts in scale and window position are to be considered. How- 
ever, this is still the continuous wavelet transform (CWT) since the integral and x(t) arc continuous in time, 
and this discretization is merely for analysis economy. 
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which allows the introduction of the dilation (or scale) parameter in order to make the time-frequen- 
cy window flexible (Ref. 2). However, this also means there is no DC-component in wavelet anal- 
yses, but then again, the time-frequency window would have to be infinite to hold the DC- 
component. What this finally implies is that the final expansion can only reduce the signal to an m- 
point approximation (for an ruth-order wavelet) in time, not a single DC component. 

The wavelet is developed not from just a single mother analyzing function as in the Fourier 

case, but from a single scaling function which is orthogonal to the analyzing wavelet basis function. 
In contrast to the STFT, which essentially windowed the basis functions (or transforms only) of the 

expansion, the wavelet truly does window the time domain and the Fourier transform directly. This 

leads naturally to a filtering/decimation process. Consider ~(t) to be a smoothing function which 
removes irregularities by averaging the signal locally over some time (or sample) interval. If one 
performs the inner product of x(t) and W (t), then one obtains an approximation of x(t) within the 
time resolution of ¥ (t), i.e., < x ¥  >, is a smoothed version of x. The scaling function must also 
cover the real line and average over varying intervals. Consequently, the scaling function has the 
same form as the wavelet, i.e., 

¢~,k(t) = a-~q~(a-Jt - kr) a > l ,  j, k E Z ,  

and where again '~ = sample time interval. However, the scaling functions only window; they don't 
wiggle or oscillate. 

The wavelet function extracts the detail from the signal, the difference between the original 
and smoothed versions, such that the signal approximation is composed of the smoothed version 
plus the detail removed by the smoothing operation. Therefore, two function spaces are established: 

q~EV~{O}C...C1/2CV~ C Vo C V_I  C V_2 c . . .  -... L 2 ( ~ )  ~ S C A L E  S P A C E  

and 

These spaces are related in that 

=~ DETAIL SPACE 
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i.e., the next finer level of approximation is generated by the orthogonal sum of the smoothed ap- 
proximation plus its detail lost due to smoothing at that level. Note that the wavelet spaces go 

inherit the scaling property, i.e., x(t) e Vj ¢~ x(dt) e Vo, from Vi; therefore, x(t) ¢ go ¢~ x(ait) 
W o. Also note that gO is the orthogonal complement of ~ in V/4, i.e., go, the detail, does not exist 
in ~;  it exists in the next finer level of approximation, ~-1. Consequently, forj  < J, 

J - j - 1  

k=O kEZ 

defines a multi-resolution pyramidal decomposition where all of the spaces are orthogonal, i.e., 

Vj.I.Vy, Wj lWi ,  , j ~ j '  and V j lWj .  

Note that Vj is decomposed into a coarser approximation plus its lost detail, but never do we 
decompose the detail any further, as shown below. This way the energy of the signal is preserved. 

x ( o  . . .  M(t) 

WAVELET PYRAMIDAL DECOMPOSITION 

Since the interest in wavelets is for the on-line analysis of a signal which has been digitally 
sampled, it makes sense to look at wavelets from a filtering (digital signal processing) point of view. 
Let a = 2, then the wavelet will have binary dilations (2 0 nat) and dyadic translations (kAff20) where 

ej,~(nAt) = 2 - ~ b ( A t ( 2 - J n -  k)), 

or simply, ej,k(n) -- 2-½~b(2-in - k). 

Notice that dilating a signal by a factor of 2 is equivalent to subsampling in the sense that only 

half the samples are necessary for similar resolution in a given time interval per Nyquist. Also 

notice that, because of the duality between frequency and time, for a binary dilated signal (l f2 the 
frequency) twice the time interval is required to sample that signal as compared to the original 
signal, non-dilated version, for a similar level of resolution. Consequently, one can lowpass filter, 

determine the detail lost by subtracting the lowpassed version from the original, and then decimate 
by a factor of 2 and accumulate more samples (look at longer time intervals) to get any resolution 
in frequency as desired at the expense of time resolution. This is the MRA described above. 
However, this MRA requires the two basis functions described by the wavelet approach. In this 
case, ~ performs the lowpass filtering and decimation to coarsen the approximation (smooth the 
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signal), and ¥ simultaneously performs the highpass filtering at the previous level to preserve the 
detail (fluctuations) which will be lost going to this coarser level of approximation. The wavelet 
analysis then processes the data according to the grid as shown below. 

Analysis 

Original Samples 
- D O O O O O O O O O O O O O  O O  O O O O  

Synthesis 

I I I I I I I I I > t 

WAVELET CALCULATION GRID 

Note again that no DC processing is performed, that the grid is much more sparse than that for the 
STFT, and finally that not all frequencies are processed; rather, the frequency axis is scaled accord- 
ing to a base 2 logarithm due to the half-band filtering and subsequent decimation by two. 

As mentioned above, the wavelet (detail) function spaces and the scale function spaces are 
related. As filters, this places some unique requirements/restrictions on the coefficients such that 
perfect reconstruction is possible. These restrictions result in a class of filters known as quadrature 
mirror filters (QMF). Quadrature mirror filters (see schematic) are filters G and H which, for all 
signals X of finite energy, produce 

II II 2 + II YH 112=11 x II 2 

where YL is the output from the lowpass filter G and YH is the output from the highpass filter H, 
both of which are operators which map/2(Z) ~ f(2Z), where 1 is the Hilbert space such that 

Ix(n) 12 < oofor neZ. In the case of perfect halt'band filters, it is obvious that the coarser 
fll~p-~ximation YL contains only those frequencies below r, J2 of the original signal x(n), while the 
highpassed signal YH contains only those frequencies above ~r2. Consequently, decimation is 
justified for both the coarser approximation and the detail, holding the number of coefficients 
({A l }, {Do}) constant at the number of original data samples. Note that reconstruction is perfect, 
and this may be expressed by 
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I = G'G + H'H 

x(o 

where G' and H' are the adjoints of the filters G and H, respectively, mapping 12(22) =,/2(Z). In 
addition, note that if g(n) denotes the impulse response of the lowpass filter with frequency 
response G(co), a highpass filter can be obtained by translating G(CO) by x-radians (i.e., replacing co 
by co - ~) and correcting for phase. Therefore, the highpass frequency response H(co) = G*(co - x), 
or h(n) - e "jxn g(1 - n) = (-l)ng(1 - n), which is true for finite impulse response (FIR) filters. The 
following block diagram illustrates the quadrature mirror filtering process. 

AI Y'r. 
• . . 

Do 
0------- ANALYSIS ~ ~ SYNTHESIS - - - - - *  

x(o 

Q U A D R A T U R E  M I R R O R  F I L T E R I N G  

Daubechies (Ref. 5) has shown that such filters can be consmmted with all of the desirable 
characteristics, i.e., compact support in both the frequency and time domains, orthogonality, mini- 
mal coefficients (no more than the number of original samples) and perfect reconstruction. In this 
case the scale functions and wavelet functions, respectively, are 

k 

and 

k 

which are known as two scale difference equations or dilation equations, and h(n) = (-1) n g(n - 1). 

The construction of wavelets then begins with the scaling function 0. Newland (Ref. 8, pp. 
308-321) provides an excellent explanation as to how these filter coefficients are determined based 
upon: 
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• C O N S E R V A T I O N  of  A R E A  (Unique  Scaling Funct ion) :  

N - I  

k=O 

• A C C U R A C Y :  
N-! 

( - - ] )k / : ' gk  = 0, 
k=0 

• and O R T H O G O N A L I T Y :  

N 
m = 0.. 1,2,...,--~- - 1 

N - 1  N - 1  

gkgi+2m = O, m ~ 0 and ~ g~ = 1, 
k=O k=O 

where N is the number of coefficients desired. These conditions result in a set of N + I simultaneous 

equations in terms ofgk, and finally, h k = (-I) 2 gk. Assuming that such filters are available, the trans- 

formation of  time domain data to a time-scale representation resulting from convolutions of the sig- 

nal with these filters follows the pyramidal scheme as coded by Press (Ref. 9) and illustrated below. 

• A 3 

2 " i"  

X(n)  = Ao( 

' ANALYS1S i 

{A1}q 
{z(n)}N {At }q {A1}_~ {D2} 

{D1}} 
{Do}_~ {D1}u 

{Do}} {Do}} 

D I S C R E T E  W A V E L E T  T R A N S F O R M  P Y R A M I D A L  A L G O R I T H M  

The most unique aspect of wavelet analysis is that the time-domain data is transformed not 

into the familiar 2D amplitude-frequency plane as with Fourier analysis, but rather into a 3D 
amplitude-scale-time domain. Again, scale refers to the broadening of the basis function to fill the 

time (or space) interval associated with the filter order, i.e., an ruth-order wavelet filter requires m 
data points for the convolution process regardless of  the level of the analysis. Consequently, the 

basis function is more compact for the first level of wavelet analysis and broadens in time (or space) 
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with each successive level of the analysis due to the decimation process which lengthens the time 
(or space) interval between successive data points. The inverse of this scale, orperiod-of-existence, 
of the basis function takes on a similarity to frequency in a mechanical sense if the basis function 

has a single zero-crossing as in the Haar and 4-tap Daubechies wavelets. This is due to the fact that 

a material fiber would undergo a tensile/compressive cycle at a rate of once per scale of the basis 
function, similar to that of a sine wave in Fourier analysis. 

This can be better shown if one considers a sine wave signal composed of two harmonics plus 
the fundamental for Fourier analysis sampled at 8 times per cycle for the highest harmonic, and the 
same except a square wave for Haar wavelet analysis as shown in Fig. 6. The Fourier analysis ap- 
plied to the sine waves illustrates each of the harmonics directly in the Fourier (amplitude vs. 

frequency) plane as coefficients of the sine waves making up the signal represented as spikes of the 

appropriate amplitude at the appropriate frequency. The wavelet analysis applied to the square 

waves illustrates these harmonics in the 3D time-scale plane as detail coefficients, which are 

constant valued functions of the appropriate amplitude at the appropriate scale of the basis function 
extending for all time (or space) of the sample block. These functions are constant-valued in time 
since the square wave signal is periodic, just as the Fourier coefficients are constant in time (or 
space) since Fourier analysis assumes stationary signals and all temporal (or spatial) dependence is 
lost following the FFT. 

Recall that the wavelet detail coefficients are the amplitudes of the fluctuating continuous 
wavelet basis functions, just as the FFF coefficients are the amplitudes of the continuous sine wave 
basis functions, to be combined to synthesize the respective signals. Similarly, the wavelet scale 
coefficients are the decimated signal samples, i.e., a smoothed representation of the signal at a 
coarser scale. For the Haar wavelet applied to a square wave oversampled at 8 samples per cycle, 
the wavelet amplitudes are all zero except the third level of decomposition (for 512 samples, this is 
level 6 of the 9 possible, i.e., 29 = 512, level 9 being the original samples), which is constant for all 
values of time (or space) for the periodic square wave. Consequently, the Haar wavelet does for 

square waves what Fourier analysis does for sine waves, i.e., determines the exact scale or 
frequency match, respectively, for a signal composed of the respective basis functions. The Haar 

wavelets, of course, can only provide such perfect scale matches if the data is properly aligned to 

harmonics and sampled appropriately, but this, too, is no different than the FFF, where pure spikes 
will occur only if the data has integral frequencies and is sampled with zero phase. Otherwise, 
smearing occurs in the FFT spectrum, and the wavelet analog is to have numerous non-zero, and 
typically oscillatory, details at scales below the highest harmonic in the signal. It should be noted 
that at the third level of decomposition, the wavelet analysis has decimated the original signal by a 
factor of 8, the exact factor of the samples per cycle, leaving only one sample per eyele. This holds 
for other sampling factors as well. In other words, the log 2 of the number of samples per cycle is the 
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decomposition level which will be non-zero if the signal is a series 3 of the basis function of  the 

wavelet. At this level, the reciprocal of the interval between the remaining samples is the frequency 
of the square wave. 

It should also be pointed out that the choice of the wavelet basis function is equivalent to 
making an assumption about the composition of the signal. The use of a Haar wavelet for a square 
wave is making the obvious assumption that a square wave is made up of the Haar basis, just as in 
the case of using the FFT makes the assumption that the signal is composed of sine functions. Each 
basis applied to the wrong signal will generate broad spectra which tend to yield little or no 
information about the signal composition. The potential of wavelets is that we now have a broad 
selection of basis functions to apply to a problem to detect characteristics which are smeared 
utilizing only the FFT, or to perform pattern recognition analysis where we generate a new basis 
dependent upon the pattern of interest. 

4.3 A P P L I C A T I O N  TO M O D E L  SIGNAL 

Consider the same signal used for the STFT analysis discussion of Section 3.0 (see Fig. 1). 

Application of the Daubechies four-term wavelet (Daub4) to this signal results in Fig. 7. Again, the 

original signal (wavelet level 10 since the number of samples = 1024 = 2 I°) is shown at scale index 

2 and the first wavelet (level 9) is shown at scale index 3. Therefore, subtracting 2 from the scale 

index in these 3D wavelet plots will yield the wavelet iteration number, which, when subtracted 

from 10 (the highest wavelet level for these data) yields the wavelet scale. Now the signal has three 

distinct frequencies, f0 =10 Hz, f l  = 80 Hz, and f2 = 128 Hz. The sampling rate was 2.56*Fmax or 
327.68 Hz. The first wavelet filters the signal and subsamples by a factor of 2, which means at level 

9 the sample rate of the wavelet scale is effectively 163.84 Hz. This is essentially twice f l ,  and 

therefore the 80-Hz signal is shown as a sinusoid at scale index 4, which is level 8 (this was verified 

using a single 80-Hz component sampled at ! 28/80 • 2.56 or 4.096 samples per cycle). The trace at 

scale index 3 (level 9) should be the fo-modulated 128-Hz cosine wave. Recall, the wavelet shows 

the detail lost by the filtering at the previous level. The interpretation of this trace is not fully un- 

derstood by the authors and it is suspected that this trace is noisy due to the wavelet basis/signal 

mismatch. The Gaussian impulses are observed as spikes at sample time indices 320 and 576 which 

broaden with successive wavelet iterations. Note that the temporal characteristics were preserved 

with the wavelet transform, unlike the FFT, and the spikes occur at the peaks of the impulse even 

though the impulses were rather broad (64 samples each). This is due to the slope change from one 
side of the peak to the other, and therefore an edge is detected by the wavelet at this point. The trace 
at scale index 6 (level 6) is an artifact of sampling the 10-Hz signal at a factor of 32.768 (2.56) 

3. Here series means a series in time (or space) of wavelet basis functions laid end to end. 
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single 10-Hz component sampled at 32.768 samples per cycle). This artifact appears to be due to a 

beating between the wavelet zeros and the signal zeros at this level, but this could not he verified 

by the author. This artifact persists regardless of the order of the wavelet, from Haar to Danb20. The 
only significant changes going to other wavelet orders were the coarsening of the traces with the 

Haar wavelet and the smoothing of the traces with the Daub20 wavelet, and the more pronounced 

spikes at the Gaussian impulse positions due to less noise with the Danb20. The Daub20 wavelet 

results are shown in Fig. 8. Note that neither Fig. 7 nor Fig. 8 contains any information about the 

amplitude modulation aspect of the signal. This is a deficiency of the wavelet analysis, at least as it 
is presently understood and interpreted by the authors. 

The STFT provided results which were considered more familiar to that of the wavelet 

analysis in interpretation aspects, but the wavelet analysis is much faster, has less impact on the 

hardware requirements for sampling, and provides suitable information once the interpretation is 

worked out. In addition, the wavelet could be used in multi-resolution schemes to properly filter the 

signal for FFT analysis or to complement the FFI" by searching for impulses or other discrete non- 

stationary events. Further research into the interpretation of wavelet data must he provided, and 

perhaps the new harmonic wavelet of Newland (Ref. 8) will shed some light in this area. 

4.4 APPLICATION TO PULSE-ECHO ANALYSIS 

Signal discontinuities are prevalent in real signals, and one such signal which relies on discon- 

tinuities is that of Pulse-Echo, which is a technique for measuring distances in materials nonintru- 

sively through the use of sound waves. In brief, a sound impulse is propagated into the material 

through an appropriate acoustic coupling and a sensor detects the echo or  re f lec ted  w a v e  caused by 
the abrupt change in the index of refraction at the opposite edge of the material (this can be the 

interface between two different materials or an air/material interface). The thickness d of the mate- 
rial is then found as t 

d = c ~  

where c is the characteristic speed of sound for the material, and t is the round trip time from 

initiation of the pulse through the material to the discontinuity in the index of refraction and back 

through the material to the sensor. The sensors are typically piezoelectric crystals of appropriate 

natural frequency which act as the transmitter when electrically pulsed and act as the receiver when 

stimulated by the returning sound wave echo (hence, the name Pulse-Echo). The signals resemble 

an impulse with ringing, (similar to a damaged hearing signal (Ref. 4) and were simulated by single 

sided sinc functions with a reduced amplitude for the echo to simulate material transmittance 
properties. The functions used were of the form 
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s i n ( t  - r l )  , .  s i n ( t  - 

where x] was near the beginning of the ensemble, "r 2 was at the midpoint of the ensemble, and A 2 
was 0.5,4 !. The first sinc function was spread over the whole interval once started, while the second 
sinc function started such as to peak at the exact midpoint and build upon the first impulse, hence 
the unit step functions U.l(t - "r). The signal was sampled at 16 samples per cycle for the I-Hz sine 
wave component of  the sinc functions, and 1024 point ensembles were used. Random noise was 
added to the signal, and various noise floor amplitudes were evaluated. The closeness in time be- 
tween the simulated pulses could be controlled to simulate varying material thickness. The test pa- 
rameters are summarized in Table 1, and the wavelet 3D detail plots are shown in Fig. 9. 

In pulse-echo measurements, assuming the material speed of sound characteristics are well 
known, the most important parameter is an accurate measurement between the main pulse and it's 

echo. Any point on the pulses can be used as a reference point, since the same sensor is used for 
transmitting and receiving it will have the same response function, but it is necessary to be 
consistent. Since real signals generally have a significant noise floor, it is usually most accurate to 
use the peaks in the pulses as the reference points. However, most pulse-echo instruments use a 
threshold test and capitalize on the rapid decay of  the response because detecting the true peak 
location is difficult electronically. The use of wavelets may change this situation due to their ability 
to detect edges and rapid slope changes in a signal. 

Table 1. Pulse-Echo Test Cases 

A 1 ANOIS E NSTAR T Figure 

1.0 0.0 128.0 9a 

1.0 0.5,41 128.0 9b 

1.0 0.9A I 128.0 9c 

1.0 0.0 169.0 12a 

1.0 0.0 385.0 12a 

In pulse-echo measurements, assuming the material speed of sound characteristics are well 
known, the most important parameter is an accurate measurement of the time interval between the 
main pulse and its echo. Any point on the pulses can be used as a reference point, since the same 
sensor is used for transmining and receiving it will have the same response function, but it is 
necessary to be consistent. Since real signals generally have a significant noise floor, it is usually 
most accurate to use the peaks in the pulses as the reference points. However, most pulse-echo 
instruments use a threshold test and capitalize on the rapid decay of the response because detecting 
the tree peak location is difficult electronically. The use of wavelets may change this situation due 
to their ability to detect edges and rapid slope changes in a signal. 
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Various Daubechies wavelets were applied to the signal with the intent of locating the peaks as 
consistent reference points for determining the time interval. The Haar (Daub2) wavelet provided the 
best results, and was used for this analysis. The FFF applied to the signal of Fig. 9a merely shows a 
pulse near DC and offers no timing information (see Fig. 10). It does illustrate that the signal is 
appropriately sampled, however, since the spectrum is essentially zero well before the Nyquist 
foldover frequency. Figure 11 illustrates the ability of the wavelet to detect the location of the peaks 
at wavelet levels 4 and 3. Level 4 is significant since at this level the signal is sampled at essentially 
the Nyquist criteria. Even in the presence of significant noise (Fig. 9c), the Haar wavelet was able to 
detect the peaks in either of these two levels. While the fourth level has a second peak which becomes 
more pronounced with increasing noise, the third level clearly distinguishes which peak in level 4 is 
the appropriate peak of the pulse for timing purposes. However, the ability of wavelets to determine 
the peak locations is tied to whether or not the peak was sampled and if the sample index n is a factor 
of~ .  This is illustrated in Fig. 12a, where the starting point was at n = 169, and a maximum error of 
13 percent (for level 3; level 4 is 7 percent) is incurred due to the subsampling resulting in the peak 
being missed slightly. This is equivalent to the scalloping effect of the FFT when the signal frequency 
does not correspond to the FFF bin center frequency but rather is offset from the center of the bin. 
Figure 12b takes this situation to the extreme by narrowing the distances between the pulses and 
having n a non-integral power of two. This is probably the minimum spacing that would be consid- 
ered a typical pulse-echo signal (for thinner materials, higher frequencies (tighter pulses) are 
typically used to space out the pulses for better time resolution of the peaks). The peaks are still well 
defined in level 4, while level 3 has rounded and smeared the peaks. 

In summary, the wavelet analysis provided a consistent set of timing points for improving the 
resolution of the pulse-echo measurement technique, especially when the signal is buried in 
significant noise. The limitation of the approach appears to be the pulse peak location relative to an 
integral power of two sample points within the ensemble. This could be resolved by performing a 
sliding wavelet analysis such that the peak would become more pronounced as it fell on an integral 
power of two sample, and then timing between two different wavelets at the same level. Work is 
being performed to make the sliding wavelet computationally efficient, and to calculate a particular 
level without having to calculate all previous levels serially. 

5.0 MALVAR WAVELET TRANSFORM 

Traditional signal analysis using the Fourier transform relies heavily on the fact that the data 
under study is stationary in some sense. The usual display of the spectra uses a single window and 
provides no way to show variations in the spectra within the window; usually only one window size 
is used throughout the analysis, tacitly assuming stationarity at least on the order of several window 
sizes. Window effects such as leakage are controlled by reducing window influence at the ends of 
the window interval, thus also discarding much of the influence of the signal data at these transition 
points and making reconstruction problematic. Noise reduction techniques are based on averaging 
over several windows which are considered to be stationary in a statistical sense. Signals 
representing non-stationary phenomena must be treated so as not to discard any parts since it cannot 
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be assumed that "one part is much like another." This will require basis functions which vary in 
time locality as well as frequency range. These basis functions both within and between windows 
must allow complete and stable reconstruction from the analysis coefficients. 

Malvar wavelets are a natural development from windowed Fourier transforms. The signal 
s(t) is first sliced up in time using window functions wjgt) to obtain a series of windowed signals 
wj~Os(t). Each of the windowed functions is then subjected to Fourier analysis. This closely resem- 
bles the Gabor (Ref. 10) approach, since the Fourier transform leads to calculating f s  < s, Wkd 
>with the wavelet wkd(t) = eia/awjgt). The windows wj~t) are chosen to give several advantages. 

Gabor used a single Gaussian with offsets for wj(t) which has a number of disadvantages. The 
Gaussian does not have compact support and the algorithms must be designed with error analysis 
in mind. But more serious is the problem of accounting for the overlap of the windows; this 
becomes clear if we try to reconstruct s(t) from the spectra. The phenomena known as "leakage" 
in Fourier analysis are caused by windowing which does not completely include a feature (such as 
a complete cycle) in a single window, but instead divides the influence across two adjacent win- 
dows. What is needed for reconstruction (and, as we will see, for control of some other influences) 
is that we have orthogonality between the windows as well as within them. 

Malvar studied lapped Fourier transforms (Ref. 11), which can be regarded as overlapping 
rectangular windows, with the intent of bringing about orthogonality between windows. Actually, 
rectangular non-overlapping windows are already orthogonal. Newland exploited this fact to use 
the Fourier transform of a rectangular window to construct a family of wavelets based on the sync 
function (Ref. 8). But the edge effects of the rectangular window are severe. Figure 13 shows a 
reconstruction of an acoustic signal from spectra given in several adjacent windows after discarding 
several of the least significant spectral coefficients; note the cusp at several interval boundaries 
caused by the slow roll-off of the Fourier spectrum of the rectangular window. Malvar found 
orthogonality conditions on the lapped transforms which can be described similarly to a windowed 
Fourier transform. But his window extends outside the "primary" interval and overlaps the adjacent 
window. Figure 14 shows how the windows of two adjacent intervals are related while Fig. 15 
shows what a typical Fourier basis function looks like after being windowed. The smooth edges on 
the windows are reminiscent of window "carpentry" which has been used to reduce leakage and 
other window effects (Ref. 12); but the older techniques did not overlap the windows nor account 
for inter-window signal effects. 

Coifman and Meyer (Ref. 13) modified Malvar's approach to obtain variable width windows 
while continuing to maintain orthogonality within and between the windows. Their approach still 
retains the faster roll-off in window effects obtained by using smooth window edges. 

Only the window shapes of part of a possible basis are shown in Fig. 16. This basis would be 
suitable to represent a signal which was almost stationary in region 1 and 4 while significant 
transient behavior is captured in regions 2 and 3. We must emphasize again that the transform 
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transient behavior is captured in regions 2 and 3. We must emphasize again that the transform 
coefficients on each of the intervals do not interact; the orthogonality ensures this. Furthermore, the 
effect of a feature extending between two adjacent windows is captured such that it can be 
accurately reconstructed in spite of round-off or truncation errors. 

We illustrate the construction of the Meyer-Coifman-Malvar discrete transformation using a 
cosine type IV basis on each basic window interval. Other bases, including the Fourier exponential 
basis, can be used, but the symmetries needed to ensure the behavior referred to in the previous 
paragraph are only simple in the cosine type IV case. 

Figure 17 shows the nomenclature for both the continuous and the discrete versions of the Malvar 
wavelets. The cj represent the "classic" interval end-points for non-overlapped windows. The jth 
interval extends from cj to cj+ 1 and has length l k 

The window wJ(0 corresponding to thejth interval is constructed by modifying the rectangular 
window using the bell profile function [~(t) shown in Fig. 18. The result is that the window wJ(t) 
extends aj to the left of cj and O~j+ltO the right of cj+ 1. The window is also modified within the 
original basic interval as shown in the Fig. 18. The "mirror image" of ~(t) is used to modify the 
right end of the 0" - 1)th interval. The particular ~(t) of Fig. 18 ensures ~(t)  has continuous 
derivatives even at cj + aj. ~(t) can be chosen to make wJ(t) as smooth as desired. 

Discretization is simplified by rescaling the entire problem, if necessary, so that the sample 
points on the jth interval occur at integers aj + n, 0 < n < lj and the c) occur exactly halfway 
between aj.land aj. Rj is the largest integer less than a) + 1/2. 

[Y(t) is discretized so that [~= [3 j (aj + n) and other functions oft  are similarly characterized. 

The discrete window function ~ for thejth interval which results is given by 

01J-n-I 

i f .  n ,  - q,  
if n E [Rj, Ij - 1 - Rj+I], 

otherwise. 

The basis functions for conventional discrete cosine type IV transforms are given in continu- 
ous and discrete form by 

= cos lCk  + )C' - 

~ , .  = cos[(k + ~)(n + ~)~], j E Z ,  0_< k,n </~ 
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Thus, the continuous and discrete basis function are 

~(t) = ~(t)~(~) 

= 

This definition does not yet define ¥L.  off the interval from cj  to c/+ l, but the symmetry of the 
basis function q~j~ (t) at the end points and a symmetry requirement on the l~/(t) completes the 
definition. 

~ , _ . _ ,  = ~ , . ;  ~ , ~ , + .  = - ~ , .  

(~'.)= + (~J_._~)= = 1 j e z , .  e [ - R i ,  Ri - 1] 

The symmetry in [3~ above is exactly equivalent to the conditions obtained by Malvar which 
ensure orthogonality between basis functions in two adjacent windows. The orthogonality of the 
discrete basis functions within and between windows can be proved exactly. 

The discrete basis function is given directly in terms of [~ by 

I' ~.~,. i f  u E [ - R j ,  R j  - 1], 

i f  n E [ R  i ,  I j  - R j  - 1], 
i r .  e [1# - R#, i# + R ,  - 1]. 

Now in order to perform the transform of a signal s n, we need the transform coefficients 
S ~ =  l S ~ ,  ,¥~. , /  . We will express the scalar product in terms of a new signal $,as follows: 

s~, = {~..+., ~,.) 
Ij + R j  - 1 

= 8 % + n ~ k , n  
n=-Rj  

Rj - 1 

n=O 
Ij -Rj+z -1 

Jr ~ 8aj+n~, n 
~=Rj 
Ij-1 

+ 
n = l  a - R j + t  

I j - I  

n = 0  
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Thus, using the new signal .~ the transform becomes 

which is an ordinary discrete cosine transform on basic interval j. The special signal ~. is said to 
be obtained by "folding" the signal s n at cj and cj + I. As expected, the transform for one window 
includes the influence of part of the signal in the adjacent windows; it obtains a weighted average 
behavior at the end-points which smooths the transition across the window edges. A similar 
"unfolding" rule is obtained easily and blends together the transforms on two adjacent windows to 
reconstruct the signal without artifacts. 

In summary: To perform the Malvar transform, fold at each aj: 

{ Saj+nl~ "1" 8aj-n-lt~_n_l 
8aj+n = 8aj+n~-n-1 -- 8aj-n-l~n 

8aj .~-n 

i fn  E [O, Rj - 1], 
if n c [-R~, -1].  
otherwise. 

then Discrete Cosine Transform ~, on each interval [aj, aj + lj - 1 ]. 

To invert the Malvar transform, first DCT as before (the DCT-IV being used here is its own 

inverse), then unfold at each aj: 

. . 

8a s +n 

i fn  E [O, R j -  1], 
if n E [ -R j , -1 ] .  
otherwise. 

5.1 THE WAVELET LIBRARY 

Since we may use windows of  rather arbitrary size in the signal, it is clear that several choices 

of the basis intervals and, consequently, of the basis itself are possible. The collection of all the 
Malvar wavelets on all the intervals in one arrangement of basis intervals is a basis for the L 2 

functions on the real line. But there are many choices for the basis intervals, so there are many basis 
sets for L 2. The collection of all these "bases" is called a wavelet library. The question is: Which 

basis from the library is the best one? 

To see how to compare two bases from the library, we consider the simple case represented in 
Fig. 19, where we have drawn only the windows for one basis rising above the axis and a window 

for the second basis but reflected below the axis. If two bases differ only in having the two upper 
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windows in one replaced by the lower window in the other, then we need only decide whether it is 

better to use the single window (thereby assuring the signal is nearly stationary) or to use the two 
smaller windows (thereby more accurately capturing any transient behavior). 

Wesfried and Wickerhauser (Ref. 14) have applied this idea in acoustic signal processing to 
recognize speech signals. They measured information in transform for the two intervals together 
against that in the single interval transform with the formula for "spectral entropy" given by 

H ( S $ t )  = - ~-~p~logpk where pk = 2. 

This is one of several information measures which can be used to "split or merge" the 
windows to obtain a minimal entropy (maximal information) basis for the signal. 

An effective and fast implementation of the idea is to first obtain Malvar transforms on rather 

small windows, say /j = 32. Then measure the entropy on each pair of intervals separately and 
grouped as one with lj = 64. If the entropy decreases, keep the larger and discard the smaller. 
Continue grouping the larger intervals in pairs and replacing if the entropy decreases. The entropy 
measure and others which are suitable will cause this process to obtain the optimal basis in time 

comparable to that required by the discrete cosine transform. Also the transform coefficients for the 
two smaller windows are used recursively to efficiently compute the transform in the larger 
window. 

Figure 20 shows a speech signal reconstructed from an optimized basis. The vertical lines rep- 

resent the optimal windows for minimum entropy. Note that the more nearly periodic the signal is, 

the longer the window. This is exactly the behavior we hope to establish for suitable optimization 
of engine bearing failure data. 

5.2 APPLICATION TO BEARING FAULT DATA 

Techniques to detect and analyze the approach of bearing failure in rotating machinery have 

obvious economic benefits. In Fig. 21 are shown the typical Fourier spectra of four types of bearing 
failure. The spectra are, of course, obtained after failure has led to the reestablishment of stationarity. 

The signal for a typical impending failure is shown in Fig. 22. Note the long interval of 
stationarity before the failure, the detailed non-stationary interval at failure onset, and the following 

stationary interval which we call "stationary failure." 

Fourier analysis of the data using 1024 point transforms is shown in Fig. 23. The spectra give 

accurate information for the two stationary regimes, but are not useful in the transient regimes. 
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The Malvar transform of the signal is shown in Fig. 24 using 1024 point transforms. Even 
though this transform is cosine based, we see the qualitative similarity for the three regimes. Indeed, 
spectra for the stationary regimes are readily recognized. 

Clearly, a long Malvar window can replace the shorter windows in the stationary regimes. In 
the transient regime, on the other hand, much narrower windows are needed to display significant 
details. 

Future work on this signal will include the implementation of the basis optimization algorithm 

described in the previous section so that the splitting and merging of the windows can be done 
automatically and, at some point, in real time. 

6.0 CONCLUSIONS 

Wavelet theory has been presented and contrasted against Fourier analysis from a basis 
approach for Malvar and Daubechies wavelets. The wavelet analysis was shown to perform 
similarly to that of Fourier analysis while maintaining the element of time in the transformation. 
The theory is still new and requires additional work to resolve interpretation issues, but it has been 
shown to be a valuable analysis tool for transient data analysis, especially if combined with tradi- 
tional Fourier analysis where appropriate. One area where wavelets offer significant analysis 
improvement is in the detection of transient edges, and further work continues in this area for image 
processing and other applications. New wavelets such as the Malvar and Harmonic wavelets are 

becoming available which have promise for improving the application and interpretation of wavelet 
analysis. 

The Malvar wavelets were chosen for engine beating failure analysis because their structure 
allows representation of stationary signals typical of rotating machinery as well as representation 
of the transient effects that mark the onset of bearing failure. Their similarity to the Fourier 
transform makes them familiar to engineers already accustomed to using Fourier spectra to under- 

stand engine behavior. The use of on-line window length optimization will focus attention on the 
unusual behavior of an engine, while more normal stationary behavior can be quickly grasped and 
assimilated. Very efficient lossless data compression is an immediate benefit of the optimization; it 
also generates effective pattern recognition parameters for use by higher level classifiers such as 
neural networks. 

The analysis of actual engine data indicates more than fair likelihood that the Malvar approach 

will, in fact, deliver the benefits to analysis for which they were chosen. All but the optimization 
has been completed with algorithms which are highly efficient and readily ported to digital signal 
processing computers; these algorithms are also parallelizable and vectorizable. Optimization can 

33 



AEDC-TR-94-17 

be done in, at worst O(n log(n)) time, but final determination has not yet been made of the actual 
speed, or of its suitability for parailelization. 

Our studies of both pulse-echo data and bearing failure detection point up some important 
facts concerning wavelet analysis. First, wavelet analysis includes a wide range of alternatives and 
supplements to Fourier analysis, some already well known and some new. As such, wavelets do not 
replace Fourier analysis', they broaden it. Second, the wavelet technique used for a problem must 
be chosen appropriate to the problem if improvements to Fourier analysis are to be realized. 
Furthermore, where Fourier analysis already provides well-understoed insight, wavelet techniques 
should complement the Fourier technique. Third, the evaluation and use of wavelet techniques 
requires a thorough foundation in Fourier analysis as well as additional training in a variety of 
wavelet analysis techniques; while the results of well-designed wavelet analysis are easily 
comprehended, casual acquaintance with the techniques is simply inadequate for the judgment 
required to produce a successful analysis design. 
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Figure 9. Wavelet analysis of pulse-echo simulated data. 
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Figure 12. Wavelet analysis of  pulse-echo simulated data with peak not coincident 
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Ovedappin8 Malvar Windows 

1.00 - 

0.75 - 

0 .50  - 

0.25 - 

-1 

\ \  

i 

I 
I 
I 
t 
I 

\ 
? " .  

I 

0 1 

cj 

wi(t) 

/ /  

~(t) ~/ \ 

14 i I I I I1~ 
3 4 

c~+l 

j | 

Figure 14. Over lapping  Maivar  windows .  
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wJk(t) = wj( t )cos[ (k+l /2) ( t  - cd)x/lj] 
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Figure 15. Typical Malvar windowed  basis function. 
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Variable Length Windows for Malvar Transform 
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Bell Function Profile ~ (~t) = sin{~14[l + sin(~2 ajt)]} 
where  ~ ( t ) 2 +  ~ ( t )  2 = 1 
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Comparison of  Two Bases 
from the Malvar Library 
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Figure 19. Comparison of two bases From the Malvar library. 
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Figure 22. Time domain signal for impending bearing failure. 
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Figure 24. Malvar transform for Fig. 22 signal. 
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